N S T R E A M

Why Real-Time **Streaming Data** Isn't Delivering Real-Time Insights

of today's enterprises. They are collecting and processing data in real-time, but they still struggle to deliver valuable streaming data insights quickly enough for meaningful action. The reason? Traditional data processing uses store-

then-process architectures that compound cost and

Streaming (real-time) data has become the lifeblood

complexity when handling large amounts of data at low latency. In an attempt to deliver real-time to the business, large enterprises spend valuable money, time, and talent on data source technologies in an effort to reduce latency, when in reality the multiple systems compound latency. For other enterprises, such solutions are cost-prohibitive. Streaming data applications built with Nstream are

able to seamlessly combine streaming data and data at rest, and apply context and run business logic

data pipeline by running the entire application stack in stream. Here's how they work to overcome the challenges of streaming data analytics. Stored data is growing

instantaneously in a process-then-store approach.

These streaming data applications complete the

at an exponential rate.

Zettabytes in 2025, compared to 97 Zettabytes in 20221

1/3 >80%

And organizations are generating massive volumes of streaming data.

Half ₹ of surveyed organizations

generate **500,000** messages per second or more³

peak at over a

million messages per second⁴ But are they doing it well?

of those companies

89%

want automated action within seconds5

43% want millisecond latency⁶

of streaming data users

develop custom applications7

70%

as it's processed. So, to store the state of an entity, multiple round-trips to a database are required.

Storage

Storing this huge volume of data racks up massive costs.

Typical applications "forget" information as soon

times a minute — to keep the data fresh.

REST APIs

Latent UIs Visualizations suffer lag, so users look at past

latency is by increasing costly compute

events. Output cannot drive automation as UIs

APIs must be polled continuously — multiple

Compute power The only way to reduce (but not eliminate)

infrastructure.

are static.

Streaming data applications eliminate latency and reduce cost, thanks to:

allowing aggregate as well as granular views.

Streaming APIs

between services and the

allow communication

UI without polling.

Streaming data Kafka Pulsar Kinesis

Stateful services

Applications "remember"

no need to store before

processing.

the state of all data so there's

Data at rest **Databases Mainframes**

Legacy applications

Runtime

Management

Tooling

Streaming

APIs

Scalable

SwimOS

Stateful

Services

Stateful Backend

Platform

Low-Code Configurable **App Dev Connectors Toolkit**

Real-time UIs

show the state of the

and are interactive —

business at any moment

Real-Time Uls Real-time Frontend Platform Enterprise Integrations

Real-time

interactive map

view of 20M+

IoT devices

Nstream Platform

Real-time

experience

scoring of

100M+ users

status of 5M+ at networkusers at streetlevel latency "dumb" legacy level accuracy equipment

For Nstream's customers, streaming data

applications lead to real-world results...

200M+

latency

Extrapolating

real-time

events per

second, with

millisecond

and quantifiable benefits.

10 GB per

second of

sources

streaming data

from 10+ data

faster time to value

Real-time

interactive UI

Customers have deployed in production at

4x fewer engineering hours to design, build,

scale (200M+ events per second) in just 6 weeks

Live heat-map

view of 30M+

70% test, and maintain

of polled/queried

fewer connections/integrations to

lower latency, as data is pushed instead

lower total cost of ownership (TCO)

maintain

N'STREAM

Sources

⁷lbid. 8lbid.

³Swim (Nstream), The State of Streaming Data, Q3 2021 ⁴lbid. ⁵lbid.

⁶lbid.

https://www.g2.com/articles/big-data-statistics ²Based on use of Apache Kafka, https://kafka.apache.org/

Contact Nstream to speak with our team

and see a real-time application in action.